Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish

نویسندگان

  • Sa Kan Yoo
  • Christina M. Freisinger
  • Danny C. LeBert
  • Anna Huttenlocher
چکیده

Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration

Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage...

متن کامل

Fyn regeneration

Fyn regeneration T hough all animals do their best to repair injured tissues—closing wounds and mounting an infl am-matory response—some species' repair programs are better than others. Certain amphibians can regrow lost limbs, for example , and zebrafi sh can completely regenerate injured fi ns. How these animals sense the initial wound and induce tissue regener-ation is unclear, however. Yoo ...

متن کامل

Damage-induced reactive oxygen species regulate vimentin and dynamic collagen-based projections to mediate wound repair

Tissue injury leads to early wound-associated reactive oxygen species (ROS) production that mediate tissue regeneration. To identify mechanisms that function downstream of redox signals that modulate regeneration, a vimentin reporter of mesenchymal cells was generated by driving GFP from the vimentin promoter in zebrafish. Early redox signaling mediated vimentin reporter activity at the wound m...

متن کامل

Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...

متن کامل

Draper/CED-1 Mediates an Ancient Damage Response to Control Inflammatory Blood Cell Migration In Vivo

Tissue damage leads to a robust and rapid inflammatory response whereby leukocytes are actively drawn toward the wound. Hydrogen peroxide (H2O2) has been shown to be an immediate damage signal essential for the recruitment of these inflammatory blood cells to wound sites in both Drosophila and vertebrates [1, 2]. Recent studies in zebrafish have shown that wound-induced H2O2 is detected by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 199  شماره 

صفحات  -

تاریخ انتشار 2012